segunda-feira, 7 de janeiro de 2013

Transmissão de Calor


Transmissão de Calor
Em certas situações, mesmo não havendo o contato físico entre os corpos, é possível sentir que algo está mais quente. Como quando chega-se perto do fogo de uma lareira. Assim, concluímos que de alguma forma o calor emana desses corpos "mais quentes" podendo se propagar de diversas maneiras.
Como já vimos anteriormente, o fluxo de calor acontece no sentido da maior para a menor temperatura.
Este trânsito de energia térmica pode acontecer pelas seguintes maneiras:
  • condução;
  • convecção;
  • irradiação.
Fluxo de Calor
Para que um corpo seja aquecido, normalmente, usa-se uma fonte térmica de potência constante, ou seja, uma fonte capaz de fornecer uma quantidade de calor por unidade de tempo.
Definimos fluxo de calor (Φ) que a fonte fornece de maneira constante como o quociente entre a quantidade de calor (Q) e o intervalo de tempo de exposição (Δt):
Sendo a unidade adotada para fluxo de calor, no sistema internacional, o Watt (W), que corresponde a Joule por segundo, embora também sejam muito usada a unidade caloria/segundo (cal/s) e seus múltiplos: caloria/minuto (cal/min) e quilocaloria/segundo (kcal/s).

Exemplo:
Uma fonte de potência constante igual a 100W é utilizada para aumentar a temperatura 100g de mercúrio 30°C. Sendo o calor específico do mercúrio 0,033cal/g.°C e 1cal=4,186J, quanto tempo a fonte demora para realizar este aquecimento?
Aplicando a equação do fluxo de calor:


Condução Térmica
É a situação em que o calor se propaga através de um "condutor". Ou seja, apesar de não estar em contato direto com a fonte de calor um corpo pode ser modificar sua energia térmica se houver condução de calor por outro corpo, ou por outra parte do mesmo corpo.
Por exemplo, enquanto cozinha-se algo, se deixarmos uma colher encostada na panela, que está sobre o fogo, depois de um tempo ela esquentará também.
Este fenômeno acontece, pois, ao aquecermos a panela, suas moléculas começam a agitar-se mais, como a panela está em contato com a colher, as moléculas em agitação maior provocam uma agitação nas moléculas da colher, causando aumento de sua energia térmica, logo, o aquecimento dela.
Também é por este motivo que, apesar de apenas a parte inferior da panela estar diretamente em contato com o fogo, sua parte superior também esquenta.

Convecção Térmica
A convecção consiste no movimento dos fluidos, e é o princípio fundamental da compreensão do vento, por exemplo.
O ar que está nas planícies é aquecido pelo sol e pelo solo, assim ficando mais leve e subindo. Então as massas de ar que estão nas montanhas, e que está mais frio que o das planícies, toma o lugar vago pelo ar aquecido, e a massa aquecida se desloca até os lugares mais altos, onde resfriam. Estes movimentos causam, entre outros fenômenos naturais, o vento.
Formalmente, convecção é o fenômeno no qual o calor se propaga por meio do movimento de massas fluidas de densidades diferentes.

Irradiação Térmica
É a propagação de energia térmica que não necessita de um meio material para acontecer, pois o calor se propaga através de ondas eletromagnéticas.
Imagine um forno microondas. Este aparelho aquece os alimentos sem haver contato com eles, e ao contrário do forno à gás, não é necessário que ele aqueça o ar. Enquanto o alimento é aquecido há uma emissão de microondas que fazem sua energia térmica aumentar, aumentando a temperatura.
O corpo que emite a energia radiante é chamado emissor ou radiador e o corpo que recebe, o receptor.

Gases


Gases
Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo totalmente. A maior parte dos elementos químicos não-metálicos conhecidos são encontrados no seu estado gasoso, em temperatura ambiente.
As moléculas do gás, ao se movimentarem, colidem com as outras moléculas e com as paredes do recipiente onde se encontram, exercendo uma pressão, chamada de pressão do gás.
Esta pressão tem relação com o volume do gás e à temperatura absoluta.
Ao ter a temperatura aumentada, as moléculas do gás aumentam sua agitação, provocando mais colisões.
Ao aumentar o volume do recipiente, as moléculas tem mais espaço para se deslocar, logo, as colisões diminuem, diminuindo a pressão.
Utilizando os princípios da mecânica Newtoniana é possível estabelecer a seguinte relação:
Onde:
p=pressão
m=massa do gás
v=velocidade média das moléculas
V=volume do gás.

Gás perfeito ou ideal
É considerado um gás perfeito quando são presentes as seguintes características:
  • o movimento das moléculas é regido pelos princípios da mecânica Newtoniana;
  • os choques entre as moléculas são perfeitamente elásticos, ou seja, a quantidade de movimento é conservada;
  • não há atração e nem repulsão entre as moléculas;
  • o volume de cada molécula é desprezível quando comparado com o volume total do gás.

Energia cinética de um gás
Devido às colisões entre si e com as paredes do recipiente, as moléculas mudam a sua velocidade e direção, ocasionando uma variação de energia cinética de cada uma delas. No entanto, a energia cinética média do gás permanece a mesma.
Novamente utilizando-se conceitos da mecânica Newtoniana estabelece-se:
Onde:
n=número molar do gás (nº de mols)
R=constante universal dos gases perfeitos (R=8,31J/mol.K)
T=temperatura absoluta (em Kelvin)

O número de mols do gás é calculado utilizando-se sua massa molar, encontrado em tabelas periódicas e através da constante de Avogadro.
Utilizando-se da relação que em 1mol de moléculas de uma substância há moléculas desta substância.

domingo, 6 de janeiro de 2013

Calor (Estudo Resumido)

Calor é a transferência de energia térmica entre dois corpos de temperatura diferentes, desta maneira, ao colocarmos dois corpos com temperatura diferentes o corpo com maior temperatura tende a perde esta temperatura e o corpo mais frio tende a ganhar temperatura  até que estejam em equilíbrio.
A unidade mais utilizada para o calor é caloria (cal), embora sua unidade no SI seja o joule (J). Uma caloria equivale a quantidade de calor necessária para aumentar a temperatura de um grama de água pura, sob pressão normal, de 14,5°C para 15,5°C.
A relação entre a caloria e o joule é dada por:
1 cal = 4,186J
Partindo daí, podem-se fazer conversões entre as unidades usando regra de três simples.
Como 1 caloria é uma unidade pequena, utilizamos muito o seu múltiplo, a quilocaloria.
1 kcal = 10³cal
Quantidade de Calor
A quantidade de calor recebida ou cedida por um corpo, ao sofrer variação de temperatura sem que haja mudança de fase, é denominada calor sensível.

Q = m.c.Dt
Q = quantidade de calor (cal)
m = massa (g)
c = calor específico (cal/g. ºC)
Dt = variação da temperatura (º C)

Dt = tF - tI
É interessante conhecer alguns valores de calores específicos:
Substância
c (cal/g°C)
Alumínio
0,219
Água
1,000
Álcool
0,590
Cobre
0,093
Chumbo
0,031
Estanho
0,055
Ferro
0,119
Gelo
0,550
Mercúrio
0,033
Ouro
0,031
Prata
0,056
Vapor d'água
0,480
Zinco
0,093
Quando:
Q>0: o corpo ganha calor.
Q<0: o corpo perde calor.

Exemplo:
Qual a quantidade de calor sensível necessária para aquecer uma barra de ferro de 2kg de 20°C para 200°C? Dado: calor específico do ferro = 0,119cal/g°C.
2kg = 2000g
Calor latente
Nem toda a troca de calor existente na natureza se detém a modificar a temperatura dos corpos. Em alguns casos há mudança de estado físico destes corpos. Neste caso, chamamos a quantidade de calor calculada de calor latente.
A quantidade de calor latente (Q) é igual ao produto da massa do corpo (m) e de uma constante de proporcionalidade (L).
Assim:
A constante de proporcionalidade é chamada calor latente de mudança de fase e se refere a quantidade de calor que 1g da substância calculada necessita para mudar de uma fase para outra.
Além de depender da natureza da substância, este valor numérico depende de cada mudança de estado físico.
Por exemplo, para a água:
Calor latente de fusão
80cal/g
Calor latente de vaporização
540cal/g
Calor latente de solidificação
-80cal/g
Calor latente de condensação
-540cal/g

Quando:
Q>0: o corpo funde ou vaporiza.
Q<0: o corpo solidifica ou condensa.

Exemplo:
Qual a quantidade de calor necessária para que um litro de água vaporize? Dado: densidade da água=1g/cm³ e calor latente de vaporização da água=540cal/g.
Assim:

Curva de aquecimento
Ao estudarmos os valores de calor latente, observamos que estes não dependem da variação de temperatura. Assim podemos elaborar um gráfico de temperatura em função da quantidade de calor absorvida. Chamamos este gráfico de Curva de Aquecimento:

O estudo do calor é bem extenso e continuaremos em outras postagens, espero que este breve estudo possa contribuir para seus conhecimentos.